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Abstract. We discuss a new type of excess noise strongly sensitive to non-homogeneous Joule heating of
random resistor network and associated with local sources of thermal noise. The evolution of the network
towards an electrical breakdown of conductor-insulator type is then studied by using a biased percolation
model and it is analysed in terms of an excess-noise temperature. Monte Carlo simulation results show a
significant increase of the excess-noise temperature over the average temperature of the network. Remark-
ably the excess-noise temperature scales with the resistance with an exponent of about 3. The predictivity
of the model can be tested on thin film resistors where the determination of the excess noise temperature
should provide a valuable indicator of the defectiveness of the film.

PACS. 72.70.+m Noise processes and phenomena – 73.61.-r Electrical properties of specific thin films and
layer structures (multilayers, superlattices, quantum wells, wires, and dots) – 81.70.Cv Nondestructive
testing: ultrasonic testing, photoacoustic testing

1 Introduction

Excess noise is the noise contribution which algebraically
adds to the thermal equilibrium value determined by
Nyquist law. It is recognized as an interesting phenomenon
both in fundamental and applied physics [1–16]. In the for-
mer case it is the microscopic source from which it orig-
inates which attracts the attention of scientists [1–4]. In
the latter case, being a non-destructive indicator of device
reliability and degradation, its measure represents an in-
teresting parameter to define the quality of an electronic
device [1–10].

Here we focus on the excess noise coupled to the re-
sistance degradation process of a thin film and we sim-
ulate the electrical breakdown of the film by describing
it as a two-dimensional random resistor network (RRN)
of conductor-insulator type. The RRN indeed provides a
general and powerful model for studying several proper-
ties of disordered systems and in particular it has been
largely applied to discuss electrical conductivity and noise
of thin film resistors [13–23]. In particular, by considering
the film as an assembly of elemental regions of mesoscopic
sizes, the present theoretical approach is particularly ap-
propriate to investigate the regularity in the adhesion to
the substrate and the homogeneity of films made of nano-
materials. We remark that dishomogeneities in the current
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distribution, due to the presence of defective regions in-
side a sample, can increase strongly the intensity of the
electrical noise [6–9] well above the concomitant change of
resistance.

While most of the attention in this context has been
devoted to the 1/f type of excess noise [1–16], in this pa-
per we introduce and investigate the properties of an ex-
cess thermal noise strongly sensitive to non-homogeneous
Joule heating of a RRN. We analyze the properties of
this new type of excess noise during the process of an
irreversible change of the RRN resistance, the so-called
electrical breakdown [15,17]. More precisely we study a
degradation process associated with a systematic increase
of the resistance [5–9,12–22]. The degradation is described
by making use of a biased percolation model [17,22] and
it is analysed in terms of the evolution of the excess-noise
temperature. Monte Carlo simulations have been then
performed to calculate this quantity. We found that the
excess-noise temperature scales with the resistance with
an exponent of about 3. Furthermore, the increase of the
noise temperature with respect to both the average tem-
perature of the RRN and the substrate temperature, as-
sociated with the increasing disorder of the network, can
be considered as a sensitive indicator of the film defective-
ness.
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2 Theoretical model and results

We describe a thin film as a two-dimensional square-lattice
network, initially made of identical resistors and deposited
on an insulating substrate at temperature T0. Without
losing in generality, we take a square geometry where N
determines the linear sizes of the lattice and Ntot = 2N2

is the total number of resistors. In practical applications,
the value of N can be related to the ratio between the
size of the sample and the grain sizes. The network is con-
tacted at the two opposite sides and a constant external
current I is applied. We consider a degradation mecha-
nism associated with an increase of the network resistance
as a consequence of the generation of insulating defects
(resistors with very high resistance i.e. broken resistors)
[16,17,22]. The case of degradation mechanism associated
with a resistance decrease and thus related to the presence
of short-cutting defects (resistors with very low resistance)
can also be studied [17,23].

Within the biased percolation model [22,23], we sim-
ulated the degradation process by using the Monte Carlo
method and by taking an activated-energy expression for
the probability of generating defects at the network posi-
tion indexed by α:

Wα = exp(− Eo
kBTα

) (1)

where Eo is the activation energy characterizing the de-
fect, kB is the Boltzmann constant and Tα is the tem-
perature of the α-th resistor. Indeed we assume that the
current iα flowing through each resistor rα, is responsible
for an extra Joule heating which implies an increase, δTα,
of the local temperature Tα. More precisely, we take [22]:

Tα = T0 + δTα = T0 +Arαi
2
α (2)

where A, measured in (kelvin/watt), is a parameter de-
scribing the temperature increase of each resistor coupled
to the substrate which acts as a thermal reservoir at tem-
perature T0, due to heat from the Ohmic resistors. We
neglect thus time-dependent effects associated with heat
diffusion [21]. Then, starting from the perfect lattice, at
each iteration step defects are generated according to Wα,
consequently all local currents, temperatures and the as-
sociated probabilities are recalculated.

From the virtual-power theorem (Tellegen’s theorem)
[16,24], the spectral density of voltage fluctuations SV (f)
of a two-terminal network under voltage operation mode
can be written as:

SV (f) =
∑
α

svα(f)
( iα
I

)2

(3)

where svα(f) is the voltage spectral density of the branch
α and the sum is extended over the Ntot network branches.
For the excess thermal-noise we consider the white region
of the spectrum and, in analogy with the Nyquist formula,
we take:

svα = 4 kB Tα rα. (4)

Fig. 1. Damage pattern with the film close to breakdown for
a network with size 40 × 40 under a constant current of 1 A.
The resistance is about 4 times the initial value. Broken bonds
indicate the defects in the film.

For the present purposes, an excess-noise temperature TN
can be defined as:

TN =
SV

4kBR
, (5)

where R = (1/I2)
∑
α rαi

2
α is the total resistance of the

network. Therefore, from equations (2) to (5), the excess-
noise temperature can be written as:

TN = T0 +ARI2 ΦR, (6)

ΦR =
∑
α r

2
αi

4
α(∑

α rαi
2
α

)2 (7)

where for the perfect networkΦR takes the minimum value
of 1/[N(N + 1)]. On the other hand, we can define an av-
erage temperature of the film as Tav = T0 +∆Tav where,
according to equation (2), the average heating of the net-
work ∆Tav can be expressed as:

∆Tav =
1

N(N + 1)

∑
α

δTα = θRI2 (8)

where θ = A/[N(N + 1)] represents the structure thermal
resistance [25,26]. By introducing the increase of the noise
temperature with respect to its equilibrium value, ∆TN =
TN − T0 we can define a merit factor of the sample, F as:

F =
∆TN
∆Tav

(9)

where F ≥ 1. Therefore, values of the merit factor larger
than unity are associated with an increasing dishomogene-
ity of the network.

As reasonable values of the parameters we take in these
calculations: N = 100, rα = 1 Ω, E0 = 0.19 eV , A =
5×105 K/W , 77 K ≤ T0 ≤ 500 K and 0.5 A ≤ I ≤ 2.0 A.
The threshold of electrical breakdown has been fixed when
the resistance increases over a factor of 103 with respect
to the initial value. Further details about the simulations
can be found in references [22,23].
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Fig. 2. Typical evolution of the network resistance for different
biasing currents at T0 = 300 K. Open circles, full circles and
triangles refer respectively to I = 1.5, 1.0, 0.5 A.

The results of the simulations are reported in Figures 1
to 6. Figure 1 shows a damaged pattern near breakdown of
the network which exhibits the typical filamentary struc-
ture [19,22].

Figure 2 shows the degradation of the RRN resistance
simulated at different values of the current flowing in the
sample. By considering the number of iteration steps pro-
portional to a given time scale (the units of which should
be defined appropriately), the number of iteration steps
needed to reach the breakdown, NBr, can be identified
with the lifetime of the RRN [23]. Therefore we can see
that at increasing current values the lifetime is drasti-
cally reduced, while the breakdown is achieved in a similar
way. This is related to the fact that we found the scaling
exponent t in the power-law R ∝ (p − pc)t independent
from the biasing current value even in the case of biased
percolation, where, as usual, we indicate with p the frac-
tion of broken resistors at an arbitrary step normalized
to the total number of network resistors and with pc the
critical fraction value (percolation threshold) [17].

Figure 3 reports typical evolutions of the excess-noise
temperature TN . Again different values of the current flow-
ing in the sample are considered ranging from 0.5 A to
2. A. In any case, in proximity of the electrical breakdown
of the RRN, the excess-noise temperature exhibits a steep
divergence.

Figure 4 illustrates an important feature of the degra-
dation process: here ∆TN is reported as a function of the
corresponding RRN resistance. The three simulations re-
fer to different values of the biasing current but for all
T0 = 300 K. The lowest value of the resistance corre-
sponds to the perfect network. As shown in this figure,
the excess-noise temperature can be expressed as a power-
function of the sample resistance. Within the biased per-
colation model, independently of the value of I, we have
found that ∆TN ∝ Rs where the scaling exponent s is
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Fig. 3. Typical evolutions of the excess-noise temperature TN

for different biasing currents at T0 = 300 K. Open circles,
squares, triangles, crosses and full circles refer respectively to
I = 2.00, 1.50, 1.00, 0.75 and 0.50 A.
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Fig. 4. Typical increase of ∆TN as a function of the film re-
sistance during the process of degradation at T0 = 300 K. The
three curves correspond respectively to I = 1.5 A (open cir-
cles), I = 1.0 A (full circles) and I = 0.5 A (triangles). For all
the curves R = 1 Ω is the value corresponding to the perfect
lattice

2.9 ± 0.4 for T0 = 300 K, while for T0 = 77 K we have
found s = 3.1±0.3. The value larger than unity of the ex-
ponent s is associated with a higher sensitivity of the noise
with respect to the resistance in monitoring the degrada-
tion process, a feature which is common with 1/f noise [5–
17]. This property is physically justified by the fact that
excess noise in both cases comes from higher moments
of the current distribution with respect to the second
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Fig. 5. Typical evolutions of ∆TN (open circles) and of ∆Tav

(full circles) as a function of the film resistance. Calculations
refer to I = 1.0 A and T0 = 300 K.

order moment determining the network resistance [13–18].

Figure 5 compares the typical evolutions of ∆TN and
of ∆Tav as a function of the increase of the sample resis-
tance. At the beginning of the evolution, when the sample
is substantially homogeneous, ∆TN and ∆Tav practically
coincide. Indeed, at this stage only few defects, uniformly
distributed [22,23], are present in the film. As the degra-
dation proceeds, the number of defects increases and their
distribution departs significantly from being uniform. In
fact, within the biased percolation model, the defects grow
preferentially around already existing ones thus exhibiting
a clustering attitude [22,23]. Therefore, as a result of the
dishomogeneity of the sample and of the different type of
local current average defining the noise and the average
temperatures of the sample, the excess-noise temperature
becomes systematically larger than the average tempera-
ture.

Figure 6 shows the final lifetime of 50 samples (differ-
ent realizations of failure) as a function of the increase of
the excess-noise temperature calculated at the 14-th step
(intermediate step). The figure refers to a RNN biased by
an external current I = 1.5 A and deposited on a sub-
strate at temperature T0 = 300 K. We can see that higher
∆TN values at the intermediate step are associated with
shorter final lifetimes. Similar behaviours are also found
for other values of I and T0 and even at relatively early
iteration steps.

3 Conclusions

We have introduced a new type of excess noise related to
non-homogeneous Joule heating of a RRN where each ele-
mental resistance is associated with a local source of ther-
mal noise. Numerical results are thus performed through
a Monte Carlo simulations based on the biased perco-
lation model. Due to non-homogeneous heating effects,
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Fig. 6. Lifetimes of 50 samples as a function of the increase
of the excess-noise temperature ∆TN at the iteration step
Nstep = 14. The biasing current and the substrate temper-
ature are respectively I = 1.5 A and T0 = 300 K. Diamonds
represent the lifetimes of the different samples, full circles their
average values. The length of error bars is twice the standard
deviation.

for a given sample the excess-noise temperature is found
to increase more than its average temperature, and sub-
stantially over the thermal temperature of the substrate.
Such an increase of the excess-noise temperature exhibits
a remarkable power-law with the resistance with a scal-
ing exponent about 3. From an applicative point of view,
the noise temperature so introduced can represent a suit-
able measure of the sample defectiveness. We remark that
the specific correlation between the excess thermal-noise
and the sample homogeneity makes the analysis of this
quantity complementary to that of the standard 1/f noise
where the physical interpretation of the noise source re-
mains an unsolved problem in general [1,4]. Of course,
for a wider application of this model one needs to bet-
ter refine the physical description (e.g. by introducing
the temperature dependence of the elemental resistors
and their possible thermal interaction). Some of these is-
sues will be the main topics of further research.
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